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Introduction



Time Varying Systematics in the REACH System

• Many sources of systematic error in the REACH 
system

• Some are expected to be static, others vary with 
time

− Reflections from the soil vary with rainfall 
(Bevins et al. 2021, 2022b)

− Impedences in the system are temperature 
dependent

− Improperly modelled beams can cause 
systematics which vary with the galactic 
foreground



Modelling Time Varying Systematics

• Model systematic as a sinusoid whose amplitude 
is modulated by the power of the galactic 
foreground

• Systematic amplitude is varied like



Introducing Gaussian Processes

• Define a GP as a collection of random variables which have consistent joint Gaussian distributions 
(Rasmussen 2004)

• Distribution is defined by the covariance matrix, or covariance function

• K is called the “kernel” – form can be chosen freely 



Squared Exponential Kernel

• In this work I use a squared exponential kernel 
with a white noise term

• We have uncorrelated white noise term, scale 
factor of the SE kernel and the covariance length 
– “hyperparameters”

• Define smooth functions 
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Gaussian Processes in the REACH Pipeline

• Hereafter called “Gaussian Process pipeline”

• D is the data, M is the model (foreground, beam model, Gaussian signal model)

• Gaussian process covariance matrix, C, fits covariance of model residuals between time bins

• “Standard pipeline” (Anstey et al. 2021, 2022) – uncorrelated time bins



Results

• In all cases added a Gaussian signal model into the data and fit for Gaussian

o A21 = 0.155 K

o σ21 = 15 MHz

o v0,21 = 85 MHz

• Parameters of systematic varied relative to signal parameters

• Data generated for 24 time bins of length 15 minutes – 6 hours of observation in total



Results – Example Comparison of Signal Posteriors – No Systematic

Standard Pipeline

Gaussian 

Process

Pipeline



Results – Example Comparison of Signal Posteriors – Systematic
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Results – Weighted RMSE



Results – Bayes Factor



Results – Fitted Signal Amplitude



Results – Fitted Centre Frequency



Future – Gaussian Process Regression

• Can also use Gaussian Processes for regression

• Mean function of the Gaussian Process posterior given by

• Can be used to predict temperature, Tpred, of model residuals at some time tpred



Future – Gaussian Process Regression

• Use weighted mean Gaussian Process 
hyperparameters to get a smooth fit to model 
residuals

• Could possibly be used to inform future time-
varying systematic models



Future – Automatic Kernel Selection

• Kernel choice is arbitrary so can use Bayes factor 
to inform us (Hee et al. 2015, Kroupa et al. in 
prep)

• Basic test with a quadratic curve with a sinusoidal 
residual

• Fit for quadratic but not sinusoid



Future – Automatic Kernel Selection

• Uses PolyChord to sample over all 
kernels using a choice parameter, c

• Uses the posterior ratio as a proxy for 
Bayes Factor 



Conclusions

• Using Gaussian Processes to account for time correlated residuals improves fitting

• General method – no systematic model required

• Regression can inform future models of systematics

• Automatic Kernel Selection can help select most appropriate kernel
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